Home Research For Teachers HISTORY
Level 1
Level 2
Level 3
PRINCIPLES
Level 1
Level 2
Level 3
CAREER
Level 1
Level 2
Level 3
Search Hot Links What's New!
Gallery Feedback Admin/Tools

Please let me remind all of you--this material is copyrighted. Though partially funded by NASA, it is still a private site. Therefore, before using our materials in any form, electronic or otherwise, you need to ask permission.
There are two ways to browse the site: (1) use the search button above to find specific materials using keywords; or,
(2) go to specific headings like history, principles or careers at specific levels above and click on the button. 
Teachers may go directly to the Teachers' Guide from the For Teachers button above or site browse as in (1) and  (2).

FAQnewred.gif (906 bytes)          

Gear Power Pumps

As the liquid comes from the reservoir, it is pushed between the gear teeth. The oil is moved around to the other side by the action of the drive gear itself and sent through the pressure line. What makes the oil squeeze in between the gear teeth? gravity and the pressure head. To prevent leakage of oil from the high to the low pressure side from occurring, you can make the gears fit better.
You might want to increase the pressure used to move the fluid along. However, the higher the pressure, the higher the friction loading on the teeth. Friction will develop heat which will expand the gears and cause the pump to seize (parts will weld together and gears will stop rotating). In order to stop this, you can have the pump case, the gears, and the bearings made out of different materials, (e.g., steel gears [1-1/2 inch thick], bronze bearings, aluminum casing). Normally, the gear speed is higher than the engine speed (normally 1.4 times the engine speed).
Oil can leak over and under the gears. To prevent leakage, you can press the bearings up against the gears. This decreases seepage but this decreases the mechanical efficiency when friction increases. Even though oil acts as lubricant, seizing can occur when oil is drained from the hydraulic system.

Volumetric efficiency is due to the number of teeth, the area of each tooth and the engine speed.

<img src="images/hydro014.gif" align="bottom" width="334" height="303">

      If you don't see the animation, click here to download Macromedia Shockwave Player.


Send all comments to allstar@fiu.edu
1995-2017 ALLSTAR Network. All rights reserved worldwide.

Funded in part by

Updated: March 12, 2004